Real-Time Wind Noise Detection and Suppression with Neural-Based Signal Reconstruction for Mult-Channel, Low-Power Devices

نویسنده

  • Anthony D. Rhodes
چکیده

Active wind noise detection and suppression techniques are a new and essential paradigm for enhancing ASR-based functionality with smart glasses, in addition to other wearable and smart devices in the broader IoT (Internet of things). In this paper, we develop two separate algorithms for wind noise detection and suppression, respectively, operational in a challenging, low-energy regime. Together, these algorithms comprise a robust wind noise suppression system. In the first case, we advance a real-time wind detection algorithm (RTWD) that uses two distinct sets of lowdimensional signal features to discriminate the presence of wind noise with high accuracy. For wind noise suppression, we employ an additional algorithm – attentive neural wind suppression (ANWS) – that utilizes a neural network to reconstruct the wearer speech signal from wind-corrupted audio in the spectral regions that are most adversely affected by wind noise. Finally, we test our algorithms through real-time experiments using low-power, multimicrophone devices with a wind simulator under challenging detection criteria and a variety of wind intensities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power

Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...

متن کامل

Variable Speed Wind Turbine DFIG Back to Back Converters Open-Circuit Fault Diagnosis by Using of Combiniation Signal-Based and Model-Based Methodes

Condition monitoring (CM) and Fault Detection (FD) of wind turbine lead to increase in reliability and availability of turbine. IGBT open circuit of wind turbine converter will bring about depletion in output current of converter and as a result, reduction in production of wind turbine power. In this research, back to back converter IGBT open - gate fault for wind turbine based on DFIG is detec...

متن کامل

Improving Data-based Wind Turbine Using Measured Data Foggy Method

The purpose of this paper is to improve the modeling of the data-driven wind turbine system that receives data from noise signals. Most of the data on industrial systems is noisely and data noise is inevitable and natural. The method and idea proposed in this paper, Data Fogging, significantly reduce the impact of noise on data-driven wind turbine system modeling, which is the basis of this met...

متن کامل

Real-time damage detection of bridges using adaptive time-frequency analysis and ANN

Although traditional signal-based structural health monitoring algorithms have been successfully employed for small structures, their application for large and complex bridges has been challenging due to non-stationary signal characteristics with a high level of noise. In this paper, a promising damage detection algorithm is proposed by incorporation of adaptive signal processing and Artificial...

متن کامل

آشکارسازی سیگنال بر اساس پردازش موازی مبتنی بر جی‌پی‌یو در شبکه‌های حس‌گری صوتی دارای زیرساخت

Nowadays, several infrastructure-based low-frequency acoustical sensor networks are employed in different applications to monitor the activity of diverse natural and man-made phenomena, such as avalanches, earthquakes, volcanic eruptions, severe storms, super-sonic aircraft flights, etc. Two signal detection methods are usually implemented in these networks for the purpose of event occurrence i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.00082  شماره 

صفحات  -

تاریخ انتشار 2017